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Abstract—The most demanding Artificial Video analytic ap-
plications require in-edge inference of the AI model to ensure
low-latencies to obtain the result. In general, the training process
of the model can be executed on the cloud taking benefit from
the high-performance computing capabilities available on those
premises.

This work presents an AI Video analytic application imple-
mented on an Edge-computing device. This device is capable of
accelerating the inference of AI models and Video compression
by dedicated hardware.

This paper presents the architecture designed to implement
Image, Networking and Deep Learning Processing functionalities
on a reconfigurable System-on-Chip. Additionally, the design
tools and design flow followed to generate all software and
hardware configuration is detailed.

This Edge Intelligence platform is currently in-service, pro-
viding the preliminary results for the targeted applications. The
proposed solution can process 33 times more video data volume
in real-time than the software GPU accelerated implementation
for the testing conditions described in the paper.

Index Terms—AI, NN, DNN, CNN, , FCN, RNN, DPU, SOC

I. INTRODUCTION

Edge Intelligence (EI) combines edge computing and Ar-
tificial Intelligence (AI). Real-time video analytics is a killer
application for edge computing [1], [2], [3]. Critical systems
like automotive or Aerospace&Defence demand low latency in
the analysis of the videos. Additionally, the resolution of these
video sources increases continuously. Thus, the traditional Al
Cloud-based approach requires higher bandwidth and speed
networking, making this approach inviable for many applica-
tions. One viable approach is edge computing with dedicated
hardware acceleration for Video coding, decoding, and Deep
Learning Processing units to accelerate AI computing.

The most demanding Al Video analytic applications require
in-edge inference of the AI model to ensure low-latencies
to obtain the result. In general, the training process of the
model can be executed on the cloud taking benefit from the
high-performance computing capabilities available in those
premises.
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This work presents an Al Video analytic application imple-
mented on an Edge-computing device that specifically targets
real-time object detection, in this case face detection. The
main point of interest is to demonstrate how this device is
capable of accelerating the inference of Al models and Video
compression by dedicated hardware.

In Section II an introduction to Deep Neural Networks
(DNNs), Convolutional Neural Networks (CNNs) and Densely
Connected Convolutional Networks (DenseNet) is presented.
These models are the base for the Al application implemented.
The hardware acceleration is achieved using FPGA technology
embedded on a reconfigurable SoC. Section III-B introduces
briefly the use of these technology for this purpose.

Section IV details the SoC architecture implemented to run
the accelerated Al Video analytic application. In this section,
the AI/ML Design Flow followed to implement the design,
the High level Architecture and the Data Flow path inside the
SoC are presented.

Section V summarizes the preliminary results obtained in
the set-up and the paper ends with the conclusions and future
work in Section VI.

II. STATE-OF-THE-ART

A. Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs) are currently the base for
many modern Artificial Intelligence (AI) applications [4]-[6].
DNNs are employed in applications from selfdriving cars [7],
tumor detection [8] to gaming [9]. In many of these domains,
DNNs are now able to exceed human accuracy. DNNs are able
to extract high-level features from raw sensory data after using
statistical learning over a large amount of data to obtain an
effective representation of an input space.

B. Convolutional Neural Networks (CNNs)

A weight-shared and windowed DNN layer implements the
computation as a convolution. The weighted sum for each
output activation is computed using a small neighborhood
of input activations and the same set of weights are shared
for every output. This is named as the °‘receptive field’.
These convolution-based layers are referred to as convolutional
(CONV) layers.

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on May 11,2023 at 08:43:25 UTC from IEEE Xplore. Restrictions apply.



Convolutional Neural Networks (CNNs) are composed of
multiple CONV layers. Each layer generates a successively
higher level abstraction of the input data, called a feature map
(fmap), which preserves essential yet unique information.

CNNs are widely used in a variety of applications including
image understanding [6], robotics [10] and speech recognition
[11].

CNNs composes of the following layers:

o CONY layers: They implement high-dimensional convo-

lutions. The input activations of a layer are structured as
a set of 2-D input feature maps (ifmaps), each of which
is called a channel.

o Fully connected (FC) layers: All output activations are
composed of a weighted sum of all input activations.

o Nonlinearity layers: They implement a nonlinear ac-
tivation. They are located typically after each CONV
or FC layer. Typical nonlinear functions are sigmoid or
hyperbolic tangent as well as rectified linear unit (ReLU)
[12].

« Pooling layers: Implementation computations that reduce
the dimensionality of a feature map pooling a set of
values in its receptive field into a smaller number of
values. They are applied to each channel separately
enhancing the robustness of the network.

« Normalization layers: They control the input distribution
across layers improving accuracy and speeding up train-
ing and improve accuracy. They are normalized such that
it has a zero mean and a unit standard deviation.

CNNs are in continuos evolution. Lenet [13], Alexnet [6],
Overfeat Fast [14], VGG-16 [15], Googlenet [15] and ResNet
[16] are good examples of how they have evolved since 1989
till now. As an example, one of the latest models, ResNet [17]
(Residual Net) was the first entry DNN in ImageNet Challenge
that exceeded human-level accuracy with a top-5 error rate
below 5% using residual connections to go even deeper (34
layers or more).

C. Fully Convolutional Networks (FCNs)

A well-known CNN standard is the Fully Convolutional
Network (FCN). This variant of CNNs is taking advantage
of the advances provided by convolutional layers in recog-
nition, which induces improvements in tasks such as image
classification [16] or object detection by bounding box [14],
which is implemented for the purpose of this work.

The main characteristic of FCNs is that their architecture
is composed entirely of convolutional layers, eliminating the
fully connected layer of them. As the Figure 1 shows, the
operation of these networks is based on making use of a
convolutional network to convert the pixels that make up the
image into classes of pixels. That is, they classify objects based
on the shape of the pixels of a particular object class in an
image, leaving aside the spatial position of the features to
focus on the position of the object itself. As such, they are
especially useful in object localization and detection.

The basic design of the fully convolutional network model
consists of the following layers:

e CNN network:The characteristics of this type of net-
works are explained in Section II-B. Its function is to
extract the characteristics of the different images.

« 1x1 convolutional layer: The purpose of this layer is to
convert the number of channels into the different classes
to be detected.

+ Transposed convolution layer: During the convolution
and grouping operations performed by the CNNs layers,
the spatial dimensions of the image are reduced. This
layer transforms the height and width of the feature maps
to those of the original image.

¢ Output channel: Contains the predicted classes for the
input pixel at the same spatial position.

CNN |——| 1x1 Conv H Transposed conv h

Figure 1. Basic operation of FCN networks.

FCNs represent a way to speed up the training process
by reducing the parameters required by dense layers. Meth-
ods based on fully convolutional neural networks [18], [14],
represent a revolution in the field of object detection and
their parameter learning approach these convolutional neural
networks significantly improve performance.

ITI. FCN BASED NETWORK (DENSEBOX) ON EMBEDDED
SYSTEMS

The large number of situations that require real-time de-
tection capabilities has had an impact on the development of
advances in neural networks that have this task as their main
purpose.

Due to the improvements introduced by the CNNs [19],
object detection methods [20] have evolved. Nowadays, the
success of CNNs has led to methods which improve detection
based on YOLO networks [21], R-CNN [22] or the FCN
network highlighted in Section II-C, to gain importance in
the field of object detection.

Methods such as R-CNN improve the efficiency in object
detection, however, this is negatively influenced by small
objects such as faces due to low resolution [23]. Moreover,
object bounding box generation and object classification in
these networks cannot be jointly optimized making end-to-end
training of the network difficult.

An improvement of small object detection using a unified
end-to-end detection pipeline is the FCN-based Densebox net-
work. The approach of this network allows detecting objects
under small scales and strong occlusion with results that
place Densebox as a clear candidate for the improvement of
efficiency in the detection applied to applications such as face
or vehicle detection [24].

A. Densebox Layers

The layers that make up the Densebox network are based
on the VGG-19 image classification model. Densebox is
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composed of 12 layers initialized by the VGG-19 model where
three pooling processes are connected to the first layer of the
next set of convolutional layers. Finally an up-sampling to
resize the image to the original size is performed.

The convolutional layer connected before the third pooling
process is fed into the up-sampling layer by concatenating
it with the last convolutional layer based on VGG-19. The
features learned by this layer are used to enhance the learning
of the pre-up-sampling layer. Densebox concatenates these
layers to improve detection performance.

The output of the last VGG-19 convolutional layers is
fed into four other 1x1 convolution layers. The first pair of
convolutional layers output a 1-channel map for the class score
and the second two predict the position of the bounding box
using a 4-channel map. At the output of the first of these layers
a Dropout is applied to reduce the overfitting of the network
and at the output of the second one negative mining is applied
to search for the samples that give a negative result (The object
is not in that pixel) to subsequently add them to the network
learning so that gradient descent learning on those samples
leads to a more robust prediction.

B. FPGAs for Deep Learning Computing

CNNs and Recurrent Neural Networks (RNNs) requires
complex and intelligent information processing. The hardware
required for this processing needs to address the following
challenges [25]:

o High computational processing.

o Cost efficiency and/or low power consumption.

o Scalability techniques and architectures to accommodate

different networks, sizes and topologies.

FPGA technology compared with CPU and GPU technology
shows some advantages to address these challenges. The
hardware implementation can be customized to meet the
specific requirements of the algorithm to be implemented. For
example, DNNs can be implemented in FPGA to only perform
the required target logic. This leads to an efficient hardware
implementation which is capable of higher computational
processing and higher energy efficiency.

FPGAs give the flexibility of the platform to allow the
researcher to develop different deep learning application in
very short timeframe. The rich set of programmable logic cells
and embedded components, such as DSP, allow it to perform
arithmetic intensive operations.

IV. SOC ARCHITECTURE

The SoC systems capabilities support different levels of
efficiency. The FPGA shows several not inconsiderable advan-
tages that make them a valuable option for machine learning
applications.

With this in mind, to achieve this acceleration of real-time
Al applications using embedded devices, specific tools are
needed. In this respect, the Deep Learning Processing Unit
(DPU) block is of great relevance. The DPU is a configurable
hardware block to perform and accelerate convolutional neural
network applications in SoC systems.

The solution proposed in this work involves many of the
resources offered by these systems. For the development of
the work, it is necessary to carry out different phases that
include training the machine learning model and designing
the appropriate hardware and software environment.

All these steps are relevant for implementing the application
for real-time intelligent face detection mentioned in the intro-
ducction by using video recording through network cameras.

A. AI/ML Design Flow

To fulfil the main objective of the present research, it is
necessary to carry out an adequate training of the neural
network. The diagram shown in Figure 2 summarises the steps
involved. For the application, WIDER Face kaggle dataset
has been used to train the network.

All these steps are carried out by the Vitis Al compiler. An
environment offered by Xilinx that includes the libraries of
the main frameworks for the development of neural networks
as well as additional tools for the generation of models
implementable on Edge.

Firstly, it is necessary to adapt the input data to the network
to train the model. For the face shape learning application,
each image must provide the vector position of the learning
target.

The Densebox network is trained and tested using the Caffe
framework for machine learning. The input image size is
320x320 pixels, and the mean and scale value is 128 and 1,
respectively. Once tested, it is necessary to quantize the model
using integer computational units and the representation of
weights and activations by lower bits.

Quantization is necessary as the inference process requires
high computational power and bandwidth to achieve optimal
latency and throughput values on the Edge. During this step,
the 32-bit floating point weights and activation values used
during network training are converted to 8-bit integers to
reduce the complexity of the requirements while maintaining
the accuracy of the model. For this process, the data layers file,
called prototxt, and the file with the weights of the pre-
trained model, defined by the extension caffemodel, are
needed. The Vitis Al compiler uses the files to generate the
quantized network description prototxt file and quantized
Caffe model parameter caffemodel file

Finally, the quantified Caffe model, the prototxt file
with the network specifications, and the architecture defined
for the DPU used to generate the implementable model file
through the Vitis environment. The generated output of the
flow is a xmodel file that contains the required instructions
and network information for the DPU to run the model on the
embedded system.

It should be noted that the implemented model is only
suitable for this specific application and neural network. For
similar applications based on real-time object detection, it
is not necessary to change the hardware design but the
implementable model has to be regenerated so that these new
weights and layers of the network are correctly interpreted by
the IP block. In order to do this, it is necessary to repeat what
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Figure 2. Model compilation process.

has been discussed above regardless of the Al framework used
(Caffe, Tensorflow or PyTorch).

B. High level Architecture

Different types of tools are necessary for the proposed
solution to develop the system properly. This system comprises
several hardware blocks to implement each functionality. In the
diagram illustrated in Figure 3, the communication between
the processing system (PS) and the programmable logic (PL)
can be seen.

o The input video pipeline that enters the images into the
system using Gstreamer tools.

e The video converting pipeline
ing/decoding tasks for the data.

o The accelerator that comprises the PL hardware blocks
for acceleration functions.

o The adaptation of the co-ordinates obtained by the Ma-
chine Learning model and the mapping to the original
stream.

« The output pipeline refers to the output data capture with
Gstreamer.

involves encod-

Meta Afixxer
Box

Bounding

RTP/RTSP

VCU Decode
VCU Encode

Zyng MPSoC (Arm® Cortex A53)

[ PLHardBlock | [ PLHardware A | [ps

Il neut/outout

Figure 3. Hardware/Software architecture diagram.

This entire system architecture is composed of four different
stages. Each stage is broken down into independent phases.

The Video Codec Unit (VCU) accelerates video processing.
It is implemented in the PL region of the FPGA. This block

encodes the video streams from and to H.264/H.265 video
standards. Frames are treated differently depending on the
targets. In this case, the data is decoded for further processing
for machine learning.

Another step included in the architecture diagram is the
video pre-processing. This task is performed by the Multi-
scaler IP block located in the PL. This IP block function is
to process the input data in order to modify it as required
for the model specifications. Those are defined by a kernel
that includes the values of the color code (BGR or RGB), the
mean, and the scale of the concrete network to adapt the input
data by:

e Cvtcolor: It reads and converts the NV12 video color
format to BGR.

o Resizing: It scales down the original frame to at most
720x720 pixels.

o Quantizing: It performs linear transformation (scaling
and shifting) to each pixels of BGR frame to satisfy DPU
input requirement.

Once the data is processed, it can be interpretable by the neural
network system.

As mentioned above, the most relevant block of the project
is the DPU, used for the acceleration of Machine Learning
applications. It is a block implemented in the SoC system that
internally, it comprises a high-performance scheduler module,
a hybrid computing array module, an instruction fetch unit
module, and a global memory pool module.

The computational engine is governed by instructions that
the unit fetches from off-chip memory. The instructions are
generated by Vitis software to perform substantial optimiza-
tions. On the other hand, the on-chip memory buffers the data
to achieve high efficiency and performance.

To carry out machine learning operations, a specific level of
adaptation of the network is necessary to the hardware. The
DPU IP block is developed and implemented under different
specifications. These features provide the embedded systems
with the ability to accelerate the applications. They include
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the possibility of implementing multiple cores to improve
performance. Furthermore, it can be configured with a group
of architectures related to the parallelism of the convolution
unit. They require different programmable logic resources to
achieve higher or lower performance. Other characteristics
such as RAM usage, ReLU type or average pool are offered.
All these characteristics determine the architecture used to
build the DPU. The architecture needs to be included after
the network training process for the network implementation
over the PL. The DPU requires the model bitstream compiled
using the Vitis environment for proper functioning.

Finally, there are three software blocks implemented in the
processing system of the SoC. Refering to the first one, the
scaled frames of video that are processed by the Multiscaler
and the DPU might not be the best for the output display. The
output of the VCU decoder block is fork into two streams,
one for the accelerator blocks and the other for the display.
The software converts the detection co-ordinates obtained by
the model and maps them to the original video stream.

The second block finishes the application process by per-
forming the task of drawing boxes around the objects identified
by the network model. This software is launched by a kernel
which includes the path to the bounding box application.

The last one is designed to compress the data payload
into RTP packets to establish the RTSP communication and
complete the last four pipelines.

C. Data Flow path

The responsible for generating the input/output information
is the GStreamer framework. This framework allows for
the implementation of multimedia solutions in different work
scenarios.

To ensure data communication is necessary to define the
correct network IPs for each device involved in the process.
As it can be seen in the Figure 4, attending to the IP camera
default IP direction, the FPGA is connected to the same
network switch and its corresponding IP is assigned. The IP
direction will be used to establish the VLC Client on the client-
side. All the IPs must be in the same subnetwork.

o= by

[ ~

192.168.2.101

|

192.168.2.2

192.168.2.50 ¢

7-gstreamer

~ l
\

N
< 7
N/ VLC
V4 A]\}iaclia Player

192.168.2.2

Figure 4. High level image dataflow representation.

Once the setup is ready, the GStreamer application is
executed. Initially, the IP camera generates the data input,

which uses the H.264 standard. Gstreamer creates an RTSP
sink capturing directly from the camera.

The data is decoded in the VCU block, which sends it to
the pre-processor software block to adapt this information into
a valid DPU input. This software is launched by the kernel
run into the GStreamer application. The format NV12 is
converted to BGR, the images are resized, and input quantizing
blocks are to meet the requirement of the DPU Al inference
engine. These steps are done in the dedicated preprocessing
IP to achieve the optimal framerate and latency.

The following kernel is referred to as the DPU block. At
this point, the called application is executed together with
the xmodel file generated during training. During the DPU
process, the input frames that the pre-processor step has
properly defined are analyzed and detected by the model
implemented in the programmable logic through the DPU.
The application gets the required tensors, including size and
vectorial position to detect the objects. Then the results are sent
to the Bounding Box block containing the software application
and box results.

Finally, the VCU encoder encodes again in the H.264
standard, and the RTP sink is created via the GStreamer
software. With the appropriate IP assigned to the client host,
VLC is waiting to establish the communication with the server
implemented in the FPGA to show the data output results.

V. RESULTS

This Edge Intelligence platform is currently in-service,
providing the preliminary results for the targeted applications.

For the face shape learning application tested in this set-up,
the framerate of the IP cameras has been modified to stress
the system. The maximum quality and the maximum framerate
allowed by the IP camera (4K resolution and framerate 25 fps)
have been selected. In these conditions and using a single
thread to run the two DPU instances implemented in the
design, there is no performance degradation in identifying
shapes and video displaying compared to the lighter values
tested (6 fps and 1240x720 pixels of resolution). This result is
consistent with the theoretical values for this Neural Network
and the DPU model used (2x4096). They are scored up to 440
fps for a single thread, more than 1500 fps for multithreading
and a DPU processing latency of 2.26 ms [26]. Multithreading
increases performance based on the FPGA’s ability to split the
DPU tasks by defining these software threads in the application
running on the MPsoC that run in parallel in hardware, similar
to a multicore processor. The number of processors that can be
put into a specific FPGA is limited by the size of the processor,
the available logic gates and memory in the FPGA, and the
ability to connect it all and meet the timings.

The same Neural Network model and configuration were
tested on RTX-2070 Mobile GPU. The face detection and box
draw has been limited to an image size of 320x320 pixels,
offering a performance of 64 fps.

Therefore, the proposed solution can process 33 times more
video data volume in real-time than the software GPU accel-
erated implementation for the described testing conditions.
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[ Resources [ Used [ Available [ Percent |
Slice LUT 100,058 230,400 43,43 %
LUT RAM 11,588 102,760 11,39 %
Flip-Flops 200,981 460,800 43,62 %
Block RAM 182 321 58,00 %
Ultra RAM 92 96 95,83 %
DSP Blocks 1,380 1,728 79,86 %

Table 1

FPGA RESOURCES USED FOR VIDEO ANALYTIC SOC IMPLEMENTATION
ON A XILINX ZYNQ ULTRASCALE+ XCZU7EV-2FFVC1156 DEVICE
MPSOC DEVICE.

Table I summarizes the FPGA resources used in the imple-
mentation. The design comprises two 2x4096 DPU instances
and one VCU unit in the reconfigurable section. The intensive
use of Ultra-RAM memories resources (95%) and DSP blocks
(1.380 blocks) is worth mentioning. The device Xilinx Zynq
UltraScale+ XCZU7EV-2FFVC1156 device MPSoC used in
this implementation is available in new generation COTS Edge
Computing devices [27]. Thus, it is feasible to implement the
techniques presented in this research in commercial equip-
ment.

VI. CONCLUSION

This work has presented an Al Video analytic application
implemented on an Edge-computing device. This device is
capable of accelerating the inference of AI models and Video
compression by dedicated hardware.

The architecture is designed to implement Video, Network-
ing, and Deep Learning Processing functionalities on a recon-
figurable System-on-Chip has been presented. An overview
of the design tools and design flow followed to generate all
software and hardware configuration has been covered.

This Edge Intelligence platform is currently in-service,
providing the preliminary results for the targeted applications.
The acceleration obtained offers latency times adequate to
implement low-latency Video analytic applications required in
critical sectors like Automotive or Aerospace&Defence.

Future work includes additional NN model testing, Time-
Sensitive Networking communication capability, and sensor
information enrichment integration on the SoC.
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